Extensions 1→N→G→Q→1 with N=C22×D9 and Q=S3

Direct product G=N×Q with N=C22×D9 and Q=S3
dρLabelID
C22×S3×D972C2^2xS3xD9432,544

Semidirect products G=N:Q with N=C22×D9 and Q=S3
extensionφ:Q→Out NdρLabelID
(C22×D9)⋊S3 = D9×S4φ: S3/C1S3 ⊆ Out C22×D9366+(C2^2xD9):S3432,521
(C22×D9)⋊2S3 = C2×C3⋊D36φ: S3/C3C2 ⊆ Out C22×D972(C2^2xD9):2S3432,307
(C22×D9)⋊3S3 = C2×D6⋊D9φ: S3/C3C2 ⊆ Out C22×D9144(C2^2xD9):3S3432,311
(C22×D9)⋊4S3 = D9×C3⋊D4φ: S3/C3C2 ⊆ Out C22×D9724(C2^2xD9):4S3432,314

Non-split extensions G=N.Q with N=C22×D9 and Q=S3
extensionφ:Q→Out NdρLabelID
(C22×D9).S3 = D18⋊Dic3φ: S3/C3C2 ⊆ Out C22×D9144(C2^2xD9).S3432,91
(C22×D9).2S3 = C2×Dic3×D9φ: trivial image144(C2^2xD9).2S3432,304

׿
×
𝔽